MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.





  MECÃNICA GRACELI GERAL - QTDRC.





equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  / G* =  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS. EM :




The Feynman–Kac formula, named after Richard Feynman and Mark Kac, establishes a link between parabolic partial differential equations (PDEs) and stochastic processes. In 1947, when Kac and Feynman were both Cornell faculty, Kac attended a presentation of Feynman's and remarked that the two of them were working on the same thing from different directions.[1] The Feynman–Kac formula resulted, which proves rigorously the real-valued case of Feynman's path integrals. The complex case, which occurs when a particle's spin is included, is still an open question.[2]

It offers a method of solving certain partial differential equations by simulating random paths of a stochastic process. Conversely, an important class of expectations of random processes can be computed by deterministic methods.

Theorem[edit source]

Consider the partial differential equation

v
defined for all  and , subject to the terminal condition
  / G* =  = [          ] ω           .v
where  are known functions,  is a parameter, and  is the unknown. Then the Feynman–Kac formula tells us that the solution can be written as a conditional expectation

  / G* =  = [          ] ω           .under the probability measure  such that  is an Itô process driven by the equation

  / G* =  = [          ] ω           .
with  is a Wiener process (also called Brownian motion) under , and the initial condition for  is .

Intuitive interpretation[edit source]

Suppose we have a particle moving according to the diffusion process

  / G* =  = [          ] ω           .
Let the particle incur "cost" at a rate of  at location  at time . Let it incur a final cost at .

Also, allow the particle to decay. If the particle is at location  at time , then it decays with rate . After the particle has decayed, all future cost is zero.

Then,  is the expected cost-to-go, if the particle starts at .

Partial proof[edit source]

A proof that the above formula is a solution of the differential equation is long, difficult and not presented here. It is however reasonably straightforward to show that, if a solution exists, it must have the above form. The proof of that lesser result is as follows:

Let  be the solution to the above partial differential equation. Applying the product rule for Itô processes to the process

one gets:  / G* =  = [          ] ω           .
  / G* =  = [          ] ω           .

Since

  / G* =  = [          ] ω           .
the third term is  and can be dropped. We also have that
  / G* =  = [          ] ω           .  

Applying Itô's lemma to , it follows that

  / G* =  = [          ] ω           .The first term contains, in parentheses, the above partial differential equation and is therefore zero. What remains is:

  / G* =  = [          ] ω           .

Integrating this equation from  to , one concludes that:

  / G* =  = [          ] ω           .

Upon taking expectations, conditioned on , and observing that the right side is an Itô integral, which has expectation zero,[3] it follows that:

  / G* =  = [          ] ω           .

The desired result is obtained by observing that:

and finally

  / G* =  = [          ] ω           .

Comentários

Postagens mais visitadas deste blog